

PowerShell Reference

Guide

Version 3

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Thank you for downloading the Skylines Academy PowerShell

Reference Guide.

We’re very excited to be part of your education journey! We

at Skylines Academy hope this guide helps you reach success –

whether it’s studying for exams, or on a daily basis as an Azure

administrator.

Interested in learning more? We encourage you to check out

our additional courses and study groups at the following:

Training Courses: www.skylinesacademy.com

Follow on Twitter

Azure Study Group

Skylines Academy

Skylines Academy Videos

http://www.skylinesacademy.com/
https://twitter.com/SkylinesAcademy
https://www.facebook.com/groups/azurestudygroup/
https://www.facebook.com/skylinesacademy/
https://youtube.com/skylinesacademy

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

POWERSHELL REFERENCE GUIDE

Introduction:

Welcome to the PowerShell Reference Guide. This guide will provide you with a reference on

key PowerShell commands often used by Azure administrators. The PowerShell commands are

also required to pass the Azure Administrator certification exams from Microsoft.

This guide uses the recently released Azure “Az” module which replaces the AzureRM

modules previously used by Microsoft. This module is intended to be more robust as it is built

on .NET Standard. Microsoft currently plans to focus on building out and supporting the “Az”

Module as the primary PowerShell module for interacting with Azure, a shift from the previous

“AzureRM” Module. Information for supporting existing PowerShell scripts using the

“AzureRM” modules is discussed below.

This guide is made up of several PowerShell commands which focus on Azure Administration

and are also a core part of Microsoft AZ-103 and AZ-300 Certifications.

Note: While we make every effort to test the commands and point out any concerns when

deleting objects, be sure to test these out yourself. Before running any of these commands in

production, we recommend you test them out in a separate Azure test account so that you

are sure you know what they are doing. Some commands are destructive in nature (e.g.,

removing resource groups, tags, etc.) and you need to ensure you fully understand the

commands that you execute.

This guide is divided into the following sections:

• PowerShell Basics:

o Cloud Shell

o Downloading PowerShell and Installing Azure Az Modules for PowerShell

• Accounts and Subscriptions

• Resource Groups

• Governance

• Storage

• Virtual Machines

• Networking

• Azure Active Directory

If you spot any errors in this guide, please submit them via the Contact Us page on the Skylines

Academy web site.

Thank you,

Skylines Academy Team

https://docs.microsoft.com/en-us/powershell/azure/overview?view=azps-1.0.0
https://www.skylinesacademy.com/azure-study-resources/

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

PowerShell Basics:

At the most basic level, Azure PowerShell is designed for administrating your Azure

environment. It is built upon Microsoft-extended PowerShell for Windows to include Azure

modules, and underwent many iterations over time. Initially, Windows PowerShell was released

and worked primarily on Windows Systems. Many server administrators would use Windows

PowerShell for administration of their windows servers, Active Directory, Microsoft Exchange,

etc. It was initially built on the .NET framework and you could only execute PowerShell locally

from a Windows machine. With the latest releases of PowerShell Core, Microsoft has moved to

.NET Core 2.x as its runtime, and now supports running on Windows, macOS, as well as Linux

platforms.

If you don’t already have PowerShell installed locally on your computer, then you can download

the latest version for your operating system from the following links:

• Installing PowerShell Core on Windows

• Installing PowerShell Core on Linux

• Installing PowerShell Core on macOS

• Installing PowerShell Core on ARM

Azure PowerShell works with PowerShell 5.1 or higher on Windows, or PowerShell Core 6.x

and later on all platforms. If you aren't sure if you have PowerShell, or are on macOS or

Linux, install the latest version of PowerShell Core.

To check your PowerShell version, run the command:

$PSVersionTable.PSVersion

To run Azure PowerShell in PowerShell 5.1 on Windows:

1. Update to Windows PowerShell 5.1 if needed. If you're on Windows 10, you already have

PowerShell 5.1 installed.

2. Install .NET Framework 4.7.2 or later.

There are no additional requirements for Azure PowerShell when using PowerShell Core.

Tip: Always make sure to keep PowerShell up to date.

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-macos?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/powershell-core-on-arm?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell#powershell-core
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-windows-powershell#upgrading-existing-windows-powershell
https://docs.microsoft.com/en-us/dotnet/framework/install

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Cloud Shell

Before you install Azure PowerShell modules so that you can run them locally, it is worth also

noting that you can now execute PowerShell from the Azure Cloud Shell. Azure Cloud Shell is a

browser-based shell for managing Azure resources and provides two primary mechanisms for

interacting with your Azure environment, either Bash or PowerShell. What this means is that

you can execute your PowerShell commands directly from inside the Azure portal by opening

up the Cloud Shell.

You can also access the shell directly by going to https://shell.Azure.com

Once you open the shell from the portal, you can now execute commands directly with instant

authentication since you have already signed into the Azure Portal.

It’s also important to know that while the Cloud Shell is temporary in nature, if you wish to

store any scripts you create, you can do so by mounting the “cloud drive” share. You will

notice the very first time you open up Cloud Shell, it will prompt you to create a resource

group, storage account, and Azure Files share. This only needs to happen the first time you

open up Cloud Shell and will then be automatically attached to every subsequent session you

open up.

Some key concepts you should also be aware of are:

https://shell.azure.com/

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

• Cloud Shell runs on a temporary host provided on a per-session, per-user basis

• Cloud Shell times out after 20 minutes without interactive activity

• Cloud Shell requires an Azure file share to be mounted

• Cloud Shell uses the same Azure file share for both Bash and PowerShell

• Cloud Shell is assigned one machine per user account

• Cloud Shell persists $HOME using a 5-GB image held in your file share

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Local Install

With all the benefits that Cloud Shell provides, you will often want to have a series of scripts

that you can execute locally. Perhaps you want to administer multiple environments or

complete tasks across multiple PowerShell modules. Whatever your reason, with PowerShell

installed locally, you now need to install the “AZ” Module so that you can administer your

Azure environment.

Install AZ Module for Existing AzureRM Module

If you already have AzureRM Modules installed on your computer, you’ll want to uninstall the

existing AzureRM Modules before installing the new Az Modules, as the modules cannot

function side-by-side. You will however have the option of enabling the AzureRM alias to

continue using the syntax you’re comfortable with and ensure that existing PowerShell scripts

continue to function properly.

Installing AZ Module (Windows Example)

Installing Azure PowerShell from the PowerShell Gallery requires elevated privileges.

Run the following command from an elevated PowerShell session (in Windows, Search for

PowerShell → Right Click → Run as Administrator)

Install-Module Az

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

You can also be more specific in your install and choose to install for a single user, or all users.

If installing for a single user, you can use the following commands:

Install-Module -Name Az -AllowClobber -Scope CurrentUser

If you want to install for all users on a system, this requires administrator privileges. From an

elevated PowerShell session either run as administrator or with the sudo command on macOS

or Linux:

Install-Module -Name Az -AllowClobber -Scope AllUsers

When to use “AllowClobber”

You may have noticed the -AllowClobber switch in the commands above. The reason for this is

to ensure that PowerShell can override any commands in existing modules. Essentially, when the

Az module gets installed, it may detect existing commands already available from other modules.

The clobber detection built into PowerShell will throw an error and the -AllowClobber switch

allows us to override the default behavior.

Trusting the Repository

By default, the PowerShell gallery is not configured as a Trusted repository for PowerShellGet.

You will see the following prompts if you have not trusted the gallery during a previous

module install.

Enter Yes to all.

Untrusted repository

Make sure to choose ‘Yes’ when prompted to install modules from the untrusted repositories.

You can make these repos trusted by using the Set-PSRepository cmdlet and changing the

installation policy if you desire given that the source is PSGallery.

“Are you sure you want to install the modules from 'PSGallery'?”

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "N"): Y

Answer 'Yes' or 'Yes to All' to continue with the installation.

Note

If you have a version older than 2.8.5.201 of NuGet, you are prompted to download and install

the latest version of NuGet+.

The Azure Az module is a rollup module for the Azure Resource Manager cmdlets. When you

install the Azure Az module, any Azure PowerShell module not previously installed is

downloaded and from the PowerShell Gallery.+

We are ready!

With our PowerShell Client and Azure PowerShell module setup, we should be good to go.

Start by verifying you can login to your Azure account.

➢ Connect-AzAccount

Upon entering this command, you will be presented with a popup window to complete your

login process and any MFA requirements.

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Accounts and Subscriptions

Before you perform any tasks within Azure, it is important to ensure you know how to connect

and disconnect from your Azure account. You will not be able to run subsequent commands if

you are not connected to an Azure Account.

Azure Accounts

Task Command Additional Explanation

Connect to Azure Account Connect-AzAccount

Connects to Azure with your Azure

account to allow use of Azure Resource

Manager Cmdlets.

Note: Upon entering this command, you

will be redirected to

https://microsoft.com/devicelogin and

presented with a popup window to

complete your login process and any MFA

requirements.

Disconnect from Azure

Account

Disconnect-AzAccount Terminates the session, disconnecting you

from your Azure account

List Azure Tenants Get-AzTenant Lists all tenants which the users is

authorized for

Get Specific Tenant Get-AzTenant -TenantId xxxxxxxx-

xxxx-xxxx-xxxx-xxxxxxxxxxxx

Lists out a specific tenant

Enable AzureRM Alias Enable-AzureRmAlias Enables the use of the AzureRM alias if

you are using scripts that contain

AzureRM commands

Disable AzureRM Alias Disable-AzureRmAlias Disables the use of the AzureRM alias if

you are using scripts that contain

AzureRM commands

https://microsoft.com/devicelogin

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Uninstall AzureRM

Modules

Uninstall-AzureRM Remove all the AzureRM modules if you

had them previously installed

Subscriptions

Once you are connected to your account, you will often want to work on or in the context of

an Azure subscription where you will be placing resources. These commands show you how to

retrieve a list of all your subscriptions, look at specific subscriptions in a tenant, and then select

the subscription you want to work on.

List all subscriptions in all

tenants the account can

access

Get-AzSubscription

Get subscriptions in a

specific tenant

Get-AzSubscription -TenantId

"xxxx-xxxx-xxxxxxxx"

Choose subscription Select-AzSubscription –

SubscriptionID “SubscriptonID”

Note: Use Get-AzSubscription command

above to identity the subscriptionID if you

do not know it.

Create New Subscription

from Enrollment account

New-AzSubscription -Name "My

Subscription" -

EnrollmentAccountObjectId ((Get-

AzEnrollmentAccount)[0].ObjectId)

-OfferType MS-XXX-0000

Advanced command used to create

subscriptions off a specific enrollment

account which has permissions to do so.

Typically used in larger enterprises.

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Resource Groups

Now that we can login to our Account and select subscriptions, we are ready to work with

resources. First let’s look at the commands to list out resources in our environment. These are

also fantastic commands to practice with as the risk of doing anything unwanted is extremely

low since you are just pulling information about your environment.

Retrieving Resource Groups

Task Command Additional Explanation

List All Resource Groups

Get-AzResourceGroup

Gets the resource group and

additional details which can also be

stored for use by additional

commands.

Retrieve Specific Resource

Group

Get-AzResourceGroup -Name "SkylinesRG” Used to find a specific resource group

based on name.

List All Resource Groups

based on string

Get-AzResourceGroup | Where

ResourceGroupName -like Skylines*

Used to find a specific resource group

based on a string, but does not need

to have an exact match.

Resource Group by

Location

Get-AzResourceGroup |

Sort Location,ResourceGroupName |

Find resource groups based on Azure

region.

Resource Group by

Location (Formatted as

Table)

Get-AzResourceGroup |

 Sort Location,ResourceGroupName |

 Format-Table -GroupBy Location

ResourceGroupName,ProvisioningState,Tags

As above with extra formatting added

on.

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Resource Group Provisioning & Management

Now we know how to look at resource groups, let’s look at how we can create new resource

groups.

Task Command Additional Explanation

Create a new Resource

Group
New-AzResourceGroup -Name

'SkylinesRG' -Location 'northcentral'

Creates a new resource group in

North Central called “Skylines RG”

Delete a Resource Group Remove-AzResourceGroup -Name "SL-

RGToDelete"

Removes a resource group and all

resources contained inside it

Note: Remember even though we have to define a regional location for a resource group, this is

purely to store the meta data. The resources inside the resource group can be deployed in

other regions. The resource group is a management construct allowing us to enforce RBAC

rights and also group resources by application lifecycle.

Resource Group Tags

As you know, the resource group itself is a management construct allowing us to enforce RBAC

rights and store meta data about the resources within the group. One of the key pieces of Meta

Data are tags.

They allow us to perform the following commands:

Task Command Additional Explanation

Display Tags

associated with

a specific

resource

group name

(Get-AzResourceGroup -Name "SkylinesRG").Tags Lists out all the tags for a specific

resource group.

To get all Azure

resource

groups with a

specific tag

(Get-AzResourceGroup -Tag @{Owner="Skylines

Academy"}).Name

Helps you locate all the resource

groups with a specific tag assigned.

To get specific

resources with

a specific tag

(Get-AzResource -TagName Dept -TagValue

Finance).Name

Find specific resources with tags.Find

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Adding Tags

Task Command Additional Explanation

Add Tags to an existing

resource group that has

no tags

Set-AzResourceGroup -Name examplegroup -Tag @{

Dept="IT"; Environment="Test" }

Used when your resource group has

NO tags currently assigned. Be careful

as not to override existing tags.

Adding tags to an existing

resource group that has

tags

1. Get Tags

2. Append

3. Update/Apply

Tags

$tags = (Get-AzResourceGroup -Name

examplegroup).Tags

$tags += @{Status="Approved"}

Set-AzResourceGroup

Used when your resource group

already has some existing tags.

Add tags to a specific

resource without tags

$r = Get-AzResource -ResourceName examplevnet -

ResourceGroupName examplegroup

Set-AzResource -Tag @{ Dept="IT";

Environment="Test" } -ResourceId $r.ResourceId -

Force

Tag specific resources that have NO

tags currently assigned. Be careful as

not to override existing tags.

Apply all tags from an

existing resource group

to the resources

beneath. (Note: this

overrides all existing

tags on the resources

inside the RG)

$groups = Get-AzResourceGroup

foreach ($group in $groups)

{

 Find-AzResource -

ResourceGroupNameEquals

$g.ResourceGroupName |

ForEach-Object {Set-AzResource -

ResourceId

$_.ResourceId -Tag $g.Tags -Force } }

Takes the resource group

tags at the parent RG and

assigns them to resources

inside the RG.

Apply all tags from a

resource group to its

resources, but retain tags

on resources that are not

duplicates.

$groups = Get-AzResourceGroup

foreach ($g in $groups)

{

 if ($g.Tags -ne $null) {

 $resources = Find-AzResource

ResourceGroupNameEquals

$g.ResourceGroupName

foreach ($r in $resources)

 {

 $resourcetags = (Get-

AzResource

-ResourceId $r.ResourceId).Tags

As above, but checks for

duplicates, retaining existing

tags which might be present.

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Remove all tags (Caution)

You may want to remove tags. If you need to, you can use this command, but do so with

caution. This command will erase all the tags from your resource groups and it is not

recoverable.

Removes all tags by passing an

empty hash

Set-AzResourceGroup -Tag @{} -Name

exampleresourcegroup

Removes all tags. Use with caution!

Resources within RGs

What we are often concerned with are specific resources inside our Resource Group. In the

Cloud world, it is not uncommon for resources to grow quickly and get out of control. These

initial commands will help you find what you have inside your RG, as well as locate resources of

specific types.

The following two commands are also very safe to use as they are focused on listing out

resources in your environment.

Task Command Additional Explanation

Find resources in a resource group

with a specific name

Get-AzResource -

ResourceGroupName "SkylinesRG"

Find resources in a resource group.

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Moving Resources from One Resource Group to Another

Moving resources between resource groups is another common task that you might be

expected to perform. It is certainly possible from the Portal but can get tedious when you have

lots of moves to complete.

Note: There are also some restrictions with Azure when moving resources between groups

and you may get an error when moving certain types.

Task Command Additional Explanation

Step 1: Retrieve

existing Resource

$Resource = Get-AzResource -ResourceType

"Microsoft.ClassicCompute/storageAccounts" -

ResourceName "SkylinesStorageAccount"

Retrieves a storage account called

“SkylinesStorageAccount”

Step 2: Move the

Resource to the New

Group

Move-AzResource -ResourceId

$Resource.ResourceId -

DestinationResourceGroupName

"SL-NewRG"

 ($resourcetags.ContainsKey($key)) {

$resourcetags.Remove($key) }

 }

 $resourcetags += $g.Tags  Set-

AzResource -Tag

$resourcetags -ResourceId $r.ResourceId -

Force

 }

 }

}

Moves the resource from Step 1 into

the destination resource group “SL-

NewRG”

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Governance

Governance has become critical for users of the cloud. As mentioned before, resources can get out of

control very quickly and having a complete governance strategy for your environment is essential.

Thankfully, Microsoft provides a number of free mechanisms to help enforce policies in your

environment. In addition, you should also check out the Microsoft Virtual Datacenter Guide. This guide

includes a complete approach for managing your Enterprise environment and is a must for large

organizations.

Either way, you will need to know about Azure policies and how they can be used to help maintain your

environment. Administering them is a daily job of any Azure Administrator as you deal with the demands

from application teams with varying requirements.

Azure Policies: View Policies and Assignments

These commands allow you to look at your existing policies and assignments:

Task Command Additional Explanation

See all policy definitions in

your subscription

Get-AzPolicyDefinition Find all of your existing policy

definitions. You can then assign these

to resource groups or subscriptions.

Retrieve assignments for a

specific resource group

$rg = Get-AzResourceGroup -Name

"ExampleGroup"

(Get-AzPolicyAssignment -Name

accessTierAssignment -Scope $rg.ResourceId

Look up all your existing assignments

for a specific resourcegroup. Using -

Name allows you to narrow down to

a specific policy assignment.

Creating Policies

This is a two-step process. First, you need to create your policies in JSON syntax, and then

create a definition from them. In step 2 below, you will see two options for referencing the

JSON policy, either via GitHub repository, or via a local file on your desktop. I encourage you

to test this out and think about how you will go about managing your policy templates long

term in your organization.

Task Command Additional Explanation

Step 1: Create JSON

Policy

Create the policy in JSON See JSON policies -

https://docs.microsoft.com/en-

us/azure/governance/policy/tutorials/create-

custom-policy-definition

https://docs.microsoft.com/en-us/azure/governance/policy/tutorials/create-custom-policy-definition
https://docs.microsoft.com/en-us/azure/governance/policy/tutorials/create-custom-policy-definition
https://docs.microsoft.com/en-us/azure/governance/policy/tutorials/create-custom-policy-definition

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Step 2: Create Policy

Definition (Local Reference)

Pass the file using Powershell.

Example:

$definition = New-AzPolicyDefinition `

 -Name denyCoolTiering `

 -Description "Deny cool access tiering for

storage" `

 -Policy "c:\policies\coolAccessTier.json"

Pass your JSON file using local

file

Step 2: Create Policy

Definition (Code Repo

Reference)

$definition = New-AzPolicyDefinition `

 -Name denyRegions `

 -DisplayName "Deny specific regions" `

 -Policy

'https://githublocation.com/azurepolicy.rules.js on'

Pass your JSON file using GitHub

Assign Policies

Now it’s time to apply our policy. This involves ASSIGNING the policy to a resource group or

subscription. In this example, we first retrieve our resource group and store it as a variable,

then reference that variable when creating the policy assignment.

Task Command Additional Explanation

Assign Azure Policy $rg = Get-AzResourceGroup -Name

"ExampleGroup"

New-AzPolicyAssignment -Name denyRegions -

Scope $rg.ResourceId -PolicyDefinition $definition

Creates a new policy assignment

to a resource group you

specified by name. The policy

assigned is indicated in the policy

definition you would have

previously created.

Resource Locks

Task Command Additional Explanation

Create a new

resource lock

New-AzResourceLock -LockLevel ReadOnly -

LockNotes "Notes about the lock" -LockName "SL-

WebSiteLock" -ResourceName "SL-WebSite"

ResourceType "microsoft.web/sites"

Creates a new resource lock on

a specific resource. In this

example, it creates a new

ReadOnly resource lock on a

website resource.

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Retrieve a resource

lock

Get-AzResourceLock -LockName "SL-WebSiteLock" -

ResourceName "SL-WebSite" -ResourceType

"microsoft.web/sites" -ResourceGroupName "SL-

RGWebSite"

Look up a specific resource

lock.

Storage

Retrieving Storage Accounts

Lists all storage

accounts in the

current subscription

Get-AzStorageAccount Find all of your storage accounts

– you will probably have a lot in a

large environment.

Create Storage Account

Task Command Additional

Explanation

Create Storage Account

Requires the resource

group name, storage

account name, valid

Azure location, and type

(SkuName).

New-AzStorageAccount -ResourceGroupName

“slstoragerg” -Name “slstorage1” -Location

“eastus”-SkuName “Standard_LRS”

Creates a new storage

account in a resource

group. You specific the

region and storage

account SKU to decide

on the type of account.

SKU Options • Standard_LRS. Locally-redundant storage.

• Standard_ZRS. Zone-redundant storage.

• Standard_GRS. Geo-redundant storage.

• Standard_RAGRS. Read access geo-redundant

storage.

• Premium_LRS. Premium locally-redundant storage.

Optional Key

Parameters

-Kind

The kind parameter will allow you to specify the type of

Storage Account.

• Storage - General purpose Storage account that

supports storage of Blobs, Tables, Queues, Files and Disks.

• StorageV2 - General Purpose Version 2 (GPv2)

Storage account that supports Blobs, Tables, Queues,

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Files, and Disks, with advanced features like data tiering.

• BlobStorage -Blob Storage account which supports

storage of Blobs only. The default value is Storage.

-Access Tier

If you specify BlobStorage as the “Kind” then you must also
include an access tier:

• Hot

• Cold
Create a storage

container in a storage

account (using storage

account name)

New-AzStorageContainer -ResourceGroupName

"slstoragerg" -AccountName "slstorageaccount" -

ContainerName "slContainer"

Create a storage

container in a storage

account (using the

storage account object)

1. Get the storage account and store it as a variable

➢ $storageaccount = Get-AzStorageAccount –

ResourceGroupName "slstoragerg" -AccountName

"slstorageaccount"

 2. Make sure you have the right one

➢  $storageaccount

This will show you the storage account object you stored in

the variable $storageaccount

3. Create the container in the storage account object  

 

➢ New-AzStorageContainer -StorageAccount

 $accountObject -ContainerName "slContainer" -

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Remove Accounts and Containers

Task Command Additional Explanation

Delete a storage account Remove-AzStorageAccount -ResourceGroup

$resourceGroup -AccountName

$mystorageaccountname

Deletes your storage account

Delete a storage container

using storage account name

and container name

Remove-AzStorageContainer -

ResourceGroupName

"slstoragerg" -AccountName "slstorageaccount"

- ContainerName "slcontainer"

Delete a storage container

using the storage account

object

Remove-AzStorageContainer -StorageAccount

$storageaccount -ContainerName "slcontainer"

Note: Make sure to storage the storage

account as a variable first, using:

$storageaccount = Get-AzStorageAccount -

ResourceGroupName "slstoragerg" -

AccountName

"slstorageaccount"

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Deploy and Manage Virtual Machines

Get Information About VMs

Task Command Additional Explanation

List all VMs in current

subscription

Get-AzVM Get all of your Azure virtual machines.

List VMs in a resource

group

(See Resource Groups

section above)

Get -AzVM -ResourceGroupName

$slResourceGroup

List all of your VMs inside a specific

resource group.

Get a specific virtual

machine
Get-AzVM -ResourceGroupName

“slresourcegroup” -Name “myVM”

Find a specific VM by its name inside of a

resource group.

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Create a VM – Simplified

We put this command here as it is a quick way to create a VM, but you are far better off using VM

configurations to create your VMs with more specific parameters applied. Try out both of them and you

will see the difference.

Task Command Additional Explanation

Create a simple VM New-AzVM -Name “vmname”

Typing in this simple command

will create a VM and populate

names for all the associated

objects based on the VM name

specified.

Create a VM Configuration Before Creating the Virtual Machine

Use the following tasks to create a new VM configuration before creating your Virtual Machine based on

that config.

Task Command Additional Explanation

Create a VM

configuration $vmconfig = New-AzVMConfig -VMName

“systemname” -VMSize "Standard_D1_v2"

Start with this step to deploy a

new VM. This step creates the

config.

Add configuration

settings

$vmconfig = Set-AzVMOperatingSystem -VM

$vmconfig -Windows -

ComputerName “systemname” -Credential $cred -

ProvisionVMAgent EnableAutoUpdate

This adds the operating system

settings to the configuration.

Add a network

interface
$vmconfig = Add-AzVMNetworkInterface -VM

$vmconfig -Id $nic.Id

Adds the network interface.

Specify a platform

image
$vmconfig = Set-AzVMSourceImage -VM $vmconfig -

PublisherName

"publisher_name" -Offer "publisher_offer" -Skus

"product_sku" -Version "latest"

Chooses your OS image to use

and associated SKUs.

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Create a VM New-AzVM -ResourceGroupName “slresourcegroup”

-Location “eastus”

-VM $vmconfigconfig

All resources are created in the resource group.

Before you run this command,

run New-AzVMConfig, Set-AzVMOperatingSystem,

Set- AzVMSourceImage, Add-AzVMNetworkInterface,

and Set-AzVMOSDisk.

Finally, we create the virtual

machine.

VM Operations

Task Command

Additional Explanation

Start a VM
Start-AzVM -ResourceGroupName “slresourcegroup” -

Name “vmname”

Power On

Stop a VM
Stop-AzVM -ResourceGroupName “slresourcegroup” -

Name “vmname”

Power Off

Restart a

running VM
Restart-AzVM -ResourceGroupName “slresourcegroup”

-Name “vmname”

Soft Restart

Delete a VM
Remove-AzVM -ResourceGroupName “slresourcegroup”

-Name “vmname”

Destroys the VM

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Networking

Get/List Networking

Task

Command

Additional Explanation

List virtual networks

Get-AzVirtualNetwork -

ResourceGroupName “slresourcegroup”

Lists all the virtual networks in the

resource group.

Get information about

a virtual network

Get-AzVirtualNetwork -Name "myVNet" -

ResourceGroupName “slresourcegroup”

Retrieves details of a specific VNET by

name.

List subnets in a virtual

network

Get-AzVirtualNetwork -Name "myVNet" -

ResourceGroupName

“slresourcegroup” | Select Subnets

Filters down to the subnets inside of the

VNET

Get information about

a subnet

Get-AzVirtualNetworkSubnetConfig -Name

"mySubnet1" VirtualNetwork $vnet

Gets information about the subnet in the

specified virtual network. The $vnet

value represents the object returned by

Get-AzVirtualNetwork you used

previously.

Get all IP addresses

from a resource group

Get-AzPublicIpAddress -

ResourceGroupName “slresourcegroup”

Get all load balancers

from a resource group

Get-AzLoadBalancer -ResourceGroupName

“slresourcegroup”

Get all network

interfaces from a

resource group

Get-AzNetworkInterface -

ResourceGroupName “slresourcegroup”

Get information about

a network interface

Get-AzNetworkInterface -Name "slNIC" -

ResourceGroupName “slresourcegroup”

Get the IP

configuration of a

network interface

Get-AzNetworkInterfaceIPConfig -Name

"slNICIP" -NetworkInterface

$nic

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Create Network Resources

Task Command Additional Explanation

Create subnet

configurations

$subnet1 = New-

AzVirtualNetworkSubnetConfig -Name

"slSubnet1" -

AddressPrefix XX.X.X.X/XX

$subnet2 = New-

AzVirtualNetworkSubnetConfig -Name

"slSubnet2" AddressPrefix XX.X.X.X/XX

Create a virtual

network
$vnet = New-AzVirtualNetwork -Name

"myVNet" -ResourceGroupName

“slresourcegroup” -Location $location -

AddressPrefix XX.X.X.X/XX -Subnet

$slsubnet1, $slsubnet2

Note: Make sure to create the subnets

first as per the previous command above.

Test for a unique

domain name

Test-AzDnsAvailability -DomainNameLabel

"myDNS" -Location $location

You can specify a DNS domain name for

a public IP resource, which creates a

mapping for

domainname.location.cloudapp.azure.com

to the public IP address in the Azure-

managed DNS servers. The name can

contain only letters, numbers, and

hyphens. The first and last character

must be a letter or number and the

domain name must be unique within its

Azure location. If True is returned, your

proposed name is globally unique.

Create a public

IP address
$pip = New-AzPublicIpAddress -Name

"myPublicIp" -ResourceGroupName

“slresourcegroup” -DomainNameLabel

"myDNS" -Location $location

AllocationMethod Dynamic

The public IP address uses the domain

name that you previously tested and is

used by the frontend configuration of the

load balancer.

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Create a frontend

IP configuration

$frontendIP = New-

AzLoadBalancerFrontendIpConfig -Name

"myFrontendIP" PublicIpAddress $pip

The frontend configuration includes the

public IP address that you previously

created for incoming network traffic.

Create a backend

address pool

$beAddressPool = New-

AzLoadBalancerBackendAddressPoolConfig -

Name

"myBackendAddressPool"

Provides internal addresses for the

backend of the load balancer that are

accessed through a network interface.

Create a probe

$healthProbe = New-

AzLoadBalancerProbeConfig -Name

"myProbe" RequestPath 'HealthProbe.aspx' -

Protocol http -Port 80 -IntervalInSeconds 15

ProbeCount 2

Contains health probes used to check

availability of virtual machines instances

in the backend address pool.

Create a load

balancing rule

$lbRule = New-AzLoadBalancerRuleConfig -

Name HTTP -

FrontendIpConfiguration $frontendIP -

BackendAddressPool $beAddressPool -

Probe

$healthProbe -Protocol Tcp -FrontendPort

80 -BackendPort 80

Contains rules that assign a public port

on the load balancer to a port in the

backend address pool.

Create an inbound

NAT

rule

$inboundNATRule = New-

AzLoadBalancerInboundNatRuleConfig -Name

"myInboundRule1" -FrontendIpConfiguration

$frontendIP -Protocol TCP -FrontendPort

3441 -BackendPort 3389

Contains rules mapping a public port on

the load balancer to a port for a specific

virtual machine in the backend address

pool.

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Create a load

balancer

$loadBalancer = New-AzLoadBalancer -

ResourceGroupName “slresourcegroup”

-Name "myLoadBalancer" -Location $location -

FrontendIpConfiguration $frontendIP

InboundNatRule $inboundNATRule -

LoadBalancingRule $lbRule -

BackendAddressPool $beAddressPool -Probe

$healthProbe

Create a network

interface

$nic1= New-AzNetworkInterface -

ResourceGroupName “slresourcegroup” Name

"myNIC" -Location $location -PrivateIpAddress

XX.X.X.X -Subnet $subnet2 -

LoadBalancerBackendAddressPool

$loadBalancer.BackendAddressPools[0] -

LoadBalancerInboundNatRule

$loadBalancer.InboundNatRules[0]

Create a network interface using the

public IP address and virtual network

subnet that you previously created.

Remove Network Resources

Task Command Additional Explanation

Delete a virtual

network
Remove-AzVirtualNetwork -Name "myVNet" -

ResourceGroupName

“slresourcegroup”

Removes the specified virtual network

from the resource group.

Delete a network

interface
Remove-AzNetworkInterface -Name "myNIC" -

ResourceGroupName

“slresourcegroup”

Removes the specified network

interface from the resource group.

Delete a load

balancer
Remove-AzLoadBalancer -Name

"myLoadBalancer" -ResourceGroupName

“slresourcegroup”

Removes the specified load balancer

from the resource group.

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Delete a public IP

address
Remove-AzPublicIpAddress-Name "myIPAddress"

-ResourceGroupName

“slresourcegroup”

Removes the specified public IP address

from the resource group.

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

Azure Active Directory Commands

Install Azure AD Module

In order to use the Azure AD commands, you first need to install the Azure AD module. Use

the following procedure to get it installed:

1. Open PowerShell

2. Type “Install-Module AzureAD”

3. Press Y to accept the untrusted repository (PSGallery).

Connect to Azure AD

Task Command Additional Explanation

Connect to Azure

Active Directory

Connect-AzureAD Note: You will be prompted to

enter your credentials and any

additional authentication steps

required.

Disconnect from

Azure Active

Directory

Disconnect-AzureAD

User and Service Principal Management

Task Command Additional Explanation

Get all users Get-AzureADUser

Get specific user Get-AzureADUser -ObjectId "user@skylinesexam.com"

Remove User Remove-AzureADUser -ObjectId "user@skylinesexam.com"

©2019 Skylines Academy, LLC All rights reserved

 PowerShell Reference Guide

New User Creation 1. Create Password Profile

$PasswordProfile = New-Object -TypeName

Microsoft.Open.AzureAD.Model.PasswordProfile

2. Set Password

$PasswordProfile.Password = "Password"

3. Create User

New-AzureADUser -DisplayName "New User" -

PasswordProfile $PasswordProfile -UserPrincipalName

"user@contoso.com" -AccountEnabled $true -

MailNickName "Newuser"

This is a three-step process that

requires first creating a

password profile, setting the

password, and then passing

these into the New-

AzureADUser command

Service Principal

Creation

First you need to create your application registration in

AzureAD then you retrieve it with this command.

Get-AzADApplication -DisplayNameStartWith
slappregistration

Once you have the application ID for the App registration,

you can use it to create the SPN (Service Principal)

New-AzADServicePrincipal -ApplicationId

11111111-1111-1111-1111-11111111111 -Password

$securePassword

Assign Role

New-AzRoleAssignment -ResourceGroupName

“slresourcegroup” -ObjectId 11111111-1111-1111-1111-
11111111111 -RoleDefinitionName Reader

This will be scoped to the

resource group name you type

in with the role definition

assigned to the SPN

In other words, the SPN is

allowed to do X at the RG

named Y.

View Current Role

Assignment

Get-AzRoleAssignment -ResourceGroupName

“slresourcegroup” -ObjectId 11111111-1111-1111-1111-
11111111111

